
Simulated Railroad Framework, http://simulrr.sourceforge.net
Synopsis: 000_Synopsis

This file valid for step 0033.11
Issue Date: tbd.

Objects and Models
==================

1 Synopsis

Models are the "smallest elements" of a Simple Multiuser Scene. The smallest
part an author can provide is a model.

Models use MIDAS Objects to instrument their functionality (animation, interac-
tivity and simulation).

2 Purpose

Models are animated, interactive VR/AR objects that may render real-life objects
(RLOs). Models use MIDAS Objects as helpers to calculate quantities for MU
capable animation, interactivity and simulation.

Intrinsic Models cannot be used without their surrounding module (they are
actually a part of the module and the module uses the MIDAS Object(s) directly).

Bound Models are loaded and initialized from their parent module, but they
have been provided independently from the module (bound models can be used by
more than one module, more often than once and even by more than one SMS).

Unbound Models are loaded/unloaded on demand. They can change their attachment
to a module during lifetime (handover). Please refer to 052_UnboundModels and
to 053_Handover for more information.

 +---+
 | Module |
 | |
 | + - - - - - - - - - + +-------------------+ |
Intrinsic Model	Bound Model							
+--------------+	+--------------+							
		MIDAS Object				MIDAS Object		
+--------------+	+--------------+							
+ - - - - - - - - - + +-------------------+								
+---+								
	Module Coordinator							
	+-------------------+							
		Unbound Model						
		+--------------+						
			MIDAS Object					
		+--------------+						
	+-------------------+							
+---+								
 +---+
Figure 1: Types of Models and their Rendering Context

Models and MIDAS Objects are subsumed under the title "objects". Objects have an
object ID and an extended object ID and can hence be uniquely identified within
an SMS (see 011_NamingRules).

http://simulrr.sourceforge.net/
http://simulrr.sourceforge.net/concepts/011_NamingRules.pdf
http://simulrr.sourceforge.net/concepts/053_Handover.pdf
http://simulrr.sourceforge.net/concepts/052_UnboundModels.pdf
http://simulrr.sourceforge.net/concepts/000_Synopsis.pdf

2.1 MIDAS Objects

- are loaded and initialized together with their parent model/module*)
- expose their external interface uiObj either to the containing module (when
 used in an intrinsic model) or to the containing model*)
- bound MIDAS Objects are part of an intrinsic model or of a bound model
- unbound MIDAS Objects are part of an unbound model

*) an exception to these rules are astral objects, which exist outside of any
 module and outside of any model.
 This is an exceptional case, which is currently only available for the avatar
 container object to enable the "default avatar container" within the Simple
 Scene Controller (Base)

2.2 Intrinsic Models

- are loaded and initialized as a part of their parent module, and cannot be
 used without this module
- are rendered relative to the module's coordinate system
- can be interactive and animated, e.g. by using MIDAS objects

2.3 Bound Models

- are loaded and initialized from their parent module (e.g. as <ProtoInstance>
 node or as <Inline> node)
- are rendered relative to the module's coordinate system
- can be interactive and animated, e.g. by using MIDAS objects
- expose their external interface uiObj to their parent module(s)

2.4 Unbound Models

- are loaded/unloaded and initialized/disabled by mechanisms of the SRR/SMUOS
 Framework (i.e. by an SSC Extension) and are stored as children of a <Group>
 node within the Module Coordinator
- contain one or more <Transform> nodes, whose properties are set from the out-
 put of the contained "positioning" MIDAS Objects, to position the model
- are rendered relative to the current module's coordinate system
- can be interactive and animated, e.g. by using MIDAS objects
- expose their external interface uiObj to the SRR/SMUOS Framework (i.e. to the
 SSC Extension and to the Module Coordinator)
Please refer to 052_UnboundModels and 053_Handover for more information.

http://simulrr.sourceforge.net/concepts/053_Handover.pdf
http://simulrr.sourceforge.net/concepts/052_UnboundModels.pdf

3 External View

3.1 The External Interface of Objects (uiObj)

MIDAS Objects and Models MUST support the following fields at their external
interface uiObj.

 | | | |
 | MOB | ASO | Bound Model | Unbound Model
-----------------------+-------+-------+---------------+-----------------
 objType | (1) | - | - | -
 version | (1) | - | - | -
-----------------------+-------+-------+---------------+-----------------
 objId | (2) | (2) | (2) | (2)
-----------------------+-------+-------+---------------+-----------------
 parentObj | (3) | - | - | -
-----------------------+-------+-------+---------------+-----------------
 universalObjectClass | (4) | - | - | (4)
-----------------------+-------+-------+---------------+-----------------
 commParam | (5) | (5) | - | (5)
 modParam | (5) | - | (5) | (5)
 disable | (5) | - | - | (5)
-----------------------+-------+-------+---------------+-----------------
 initialized | (6) | - | - | (6)
 attached | (6) | - | - | (6)
 enabledOut | (6) | - | - | (6)

Additionally, each MIDAS Object and each model supports fields specific to its
function.

Note: since unbound models need the existence of extensions of the SMUOS
Framework, it may happen that some extensions of the SMUOS Framework require
more fields from their unbound models than described here.

(1) Type Information

 Each MIDAS Object SHOULD publish information about its type and version

(2) Object ID

 Each object (i.e. each MIDAS Object and each model) MUST provide the
 possibility to set the objId by the user of the object

(3) Dependent MIDAS Objects

 The MIB Core prototype assumes that each dependent MIDAS Object provides
 this field

(4) universalObjectClass
 This field is needed for unbound objects (UBOs)

(5) Setting the Mode of Operation (MOO)

 The MOO of an object (see next chapter) can be set with one of the fields
 commParam, modParam and disable.

(6) Reporting the MOO

 The MOO of an object (see next chapter) can be read from the fields
 initialized, attached and enabledOut.

3.2 Initialization and Attachment - The Modes of Operation (MOOs)

The MIB Core prototype cares about the MOOs. Please see following figure:

+--+
| Model |
| |
| +--+ |
	MOB Container															
	+--+															
		MIB Core														
		+-----------------------------+ +-----------------------------+														
			MIDAS Object (MOB)		MIDAS Object (MOB)											
			+-------------------------+		+-------------------------+											
				MIDAS Base (MIB)				MIDAS Base (MIB)								
				+---------------------+				+---------------------+								
					MIB Core						MIB Core					
		ad inf. ad inf.														
+--+
Figure 2: Inner Structure of an SrrTrains/SMS Model

That means:
 - the MIB Core prototype is used to organize all dependent MIDAS Objects (MOBs)
 - this is valid for a model (which has dependent MOBs),but
 - it is also valid for MOBs, because MOBs can have dependent MOBs, too
 - the MIDAS Base prototypes (which should not be confused with the MIB Core
 prototype) are used within MIDAS Objects only. The MIDAS Base prototypes
 care about the MAM, the MOC and the ObCo (see next chapter)
 - the MIB Core prototype is used to care about initialization and attachment
 (this chapter)

About the MOOs (Initialization and Attachment):
--

 The field "universalObjectClass" (uoc) can be set only once, immediately
 after the object has been loaded. This field indicates, whether the object is
 an astral/bound object or an unbound object

 The state "initialized" (MOO I or MOO III) means, the object is ready to
 function properly, but it is not attached to a module. Being attached to
 a module would be a precondition to "really" exist, because it's the modules
 that establish local coordinate systems for being displayed.

 Being "attached" to a module means the object can have an ObCo (see next
 chapter), which follows the MOC (see next chapter) of the module. Hence the
 object can "really" exist.
 Unbound models have the ability to change their parent module (handover).

 (Re-)Initialization and an optional De-Attachment is started by sending the
 "commParam" to the object. In case of success, the result is
 MOO I (initialized) for astral objects (uoc == null)
 MOO III (initialized/detached) for unbound objects (uoc != null)

 (Re-)Initialization and (Re-)Attachment is started by sending the "modParam"
 to the object. In case of success, the result is
 MOO II (attached) for bound objects (uoc == null)
 MOO IV (attached) for unbound objects (uoc != null)

 Disabling is started by sending "disable" to the object or when the parent
 module of a bound object gets disabled. Result is
 MOO V for astral, bound or unbound objects

 Unbound objects can switch freely between MOO III and MOO IV

 Astral objects cannot change from MOO I to MOO II (then they were bound)

 Bound objects cannot change from MOO II to MOO I (then they were astral)

 MOO V cannot be left any more. If an object is once disabled, then it must be
 unloaded and loaded again to get initialized/attached again

3.3 The MAM, the MOC and the ObCo

The module activity matrix (MAM) is already described at 012_FrameAndModules.
Each module is inactive in a set of scene instances and active in the complemen-
tary set of scene instances. One of the latter scene instances is defined to
carry the MOC role for this module.

The Object Controllers (ObCos) of all MIDAS objects follow the MOCs of the
parent modules, as long as the MIDAS objects are attached to their parent
module.

If an unbound object (UBO) gets detached from its parent module, then a possibly
existing ObCo role in this scene instance gets deactivated, too. It might happen
that the object will have no ObCo for some time (until an(other) instance of the
object takes the ObCo role (again)).

4 Internal View

4.1 How to Develop MIDAS Objects

The present paper serves as a short introduction into MIDAS objects, but even
more information – in particular about the MIDAS Base - can be found in
301_MidasObjects, 311_MidasBase, 312_MidasBaseNoState and 313_MidasBaseAnim.

4.2 How to Develop Models

The demo layout contains a lot of models. Those models can be used as templates
for your own models.

4.3 Authoring Support

The models of the demo layout have been constructed mainly with the help of
X3D-Edit, some parts (e.g. the roof of the carousel) were generated with the
help of Blender.
It's planned to provide Blender Python Scripts together with the SRR Framework,
so that modeling SrrTrains models should become easier in the future.

http://simulrr.sourceforge.net/concepts/313_MidasBaseAnim.pdf
http://simulrr.sourceforge.net/concepts/312_MidasBaseNoState.pdf
http://simulrr.sourceforge.net/concepts/311_MidasBase.pdf
http://simulrr.sourceforge.net/concepts/301_MidasObjects.pdf
http://simulrr.sourceforge.net/concepts/012_FrameAndModules.pdf

5 Additional Info

5.1 The Fields of uiObj

uiObj is the external interface ("user/minimum interface") of an object.

5.1.1 objType, version

 A MIDAS Object outputs these parameters as some means to identify the
 object type and the version of the object. This may be helpful in future
 releases, when MIDAS Objects from different versions ("steps") of the
 SRR/SMUOS Framework have to work together.
 Currently some MIDAS Objects use the "objType" field to identify the type
 of dependent MIDAS Objects (if some type of dependent object is required)

5.1.2 objId

 Each object needs a unique ID, which distinguishes the object from all
 other objects of the same module/UOC.
 The user of each MIDAS Object (frame author, module author, model author)
 has to care, that the object IDs remain unique.
 When MIDAS Objects are nested, then the nested objects derive their
 "concatenated object ID" from the "concatenated object ID" of the parent
 and the own object ID.
 The user of each model (module author, SSC Extension) has to care, that
 the object IDs remain unique within each module or UOC.
 Please refer to 011_NamingRules for further information.

5.1.3 parentObj

 Before initializing the dependent MOBs, the MIB Core prototype forwards
 information about the parent object to the dependent MOBs. The presence
 of this field is presumed by MibCore.

5.1.4 commParam, modParam, disable

 These fields are forwarded to the contained MIB Core prototype MibCore.
 These fields are the input for initialization, attachment and disabling
 of an object. See chapters 3.2 and 5.3.
 The fields objId and universalObjectClass must be set, BEFORE modParam
 or commParam is set.

5.1.5 initialized, attached, enabledOut

 Initialization, ReInitialization, DeInitialization, Attachment,
 ReAttachment and DeAttachment are triggered by commParam, modParam or
 disable (see above).
 The present fields are used to report the MOO of the object after such
 procedures. See chapters 3.2 and 5.3.

5.1.6 universalObjectClass

 Some models (unbound models) are not only assigned to a parent (current)
 module, but also to a so-called "universal object class (UOC)". A SMUOS
 extension can define one or more UOCs. In this case, the SSC extension
 has to contain one "SSC Dispatcher" for each UOC.
 This field takes the reference to the applicable "SSC Dispatcher".

http://simulrr.sourceforge.net/concepts/011_NamingRules.pdf

5.2 General Info about MIDAS Base

 MIDAS Objects can be contained in unbound models, in bound/intrinsic
 models or they can be astral objects (MIDAS Objects may be astral, but
 models can never be astral).

 Hence the MIDAS Base and MIB Core support following types of objects:

 - astral objects (MOO "LOADED", MOO I or MOO V)
 - bound objects (MOO "LOADED", MOO II or MOO V)
 - unbound objects (MOO "LOADED", MOO III, MOO IV or MOO V)

 Only bound objects and unbound objects can "really" exist, that means they
 can be attached to a module (MOO II or MOO IV).

 When unbound objects are not attached to a module (MOO III aka "detached")
 then they do not "really" exist, i.e. they cannot have an OBCO in this
 scene instance and they cannot be active (they cannot deliver quantities
 for simulation nor animation).

 Astral objects are special MIDAS Objects that exist outside of modules
 and cannot maintain a global state. Models can never be astral objects.

 A note about "Module Independent Global State" (tbc.???!!!)

 Module independent global state exists either in the SSC or in an
 unbound model.

 In some future release of the SRR/SMUOS Framework it might happen
 that modules will maintain global state, which is module dependent
 but somehow "out of the module".

5.3 MOO Changes of Objects

Objects (i.e. MIDAS Objects and SMS Models) support following MOOs and MOO
Changes at their external interface uiObj:

The MOO Changes are triggered by the fields "commParam", "modParam" and
"disable". The actual MOO can be derived from the fields "universalObjectClass",
"initialized", "attached" and "enabledOut".

5.3.1 Astral Objects

Astral Objects support the MOOs
 - MOO "LOADED",
 - MOO I (initialized) and
 - MOO V (disabled)

and following MOO Changes:

- MOO "LOADED" ---> MOO I:
 - Trigger = commParam
 - universalObjectClass = null
 - Procedures:
 - initialization
 - Result:
 - enabled = true (no change)
 - initialized = true (fires)
 - attached = false (no change)

- MOO "LOADED" ---> MOO V:
 - Trigger = disable
 - universalObjectClass = null
 - Procedures:
 - none
 - Result:
 - enabled = false (fires)
 - initialized = false (no change)
 - attached = false (no change)

- MOO I ---> MOO I:
 - Trigger = commParam
 - universalObjectClass = null
 - Procedures:
 - reInitialization
 - Result:
 - enabled = true (no change)
 - initialized = true (fires again)
 - attached = false (no change)

- MOO I ---> MOO V:
 - Trigger = disable
 - universalObjectClass = null
 - Procedures:
 - deInitialization
 - Result:
 - enabled = false (fires)
 - initialized = false (fires)
 - attached = false (no change)

5.3.2 Bound Objects

Bound Objects support the MOOs
 - MOO "LOADED",
 - MOO II (attached) and
 - MOO V (disabled)

and following MOO Changes:

- MOO "LOADED" ---> MOO II:
 - Trigger = modParam
 - universalObjectClass = null
 - Procedures:
 - initialization
 - attachment
 - Result:
 - enabled = true (no change)
 - initialized = true (fires)
 - attached = true (fires)

- MOO "LOADED" ---> MOO V:
 - Trigger = disable
 - universalObjectClass = null
 - Procedures:
 - none
 - Result:
 - enabled = false (fires)
 - initialized = false (no change)
 - attached = false (no change)

- MOO II ---> MOO II:
 - Trigger = modParam
 - universalObjectClass = null
 - Procedures:
 - reInitialization
 - reAttachment
 - Result:
 - enabled = true (no change)
 - initialized = true (fires again)
 - attached = true (fires again)

- MOO II ---> MOO V:
 - Trigger = disable
 - universalObjectClass = null
 - Procedures:
 - deAttachment
 - deInitialization
 - Result:
 - enabled = false (fires)
 - initialized = false (fires)
 - attached = false (fires)

5.3.3 Unbound Objects

Unbound Objects support the MOOs
 - MOO "LOADED",
 - MOO III (detached),
 - MOO IV (attached) and
 - MOO V (disabled)

and following MOO Changes:

- MOO "LOADED" ---> MOO III:
 - Trigger = commParam
 - universalObjectClass != null
 - Procedures:
 - initialization
 - Result:
 - enabled = true (no change)
 - initialized = true (fires)
 - attached = false (no change)

- MOO "LOADED" ---> MOO IV:
 - Trigger = modParam
 - universalObjectClass != null
 - Procedures:
 - initialization
 - attachment
 - Result:
 - enabled = true (no change)
 - initialized = true (fires)
 - attached = true (fires)

- MOO "LOADED" ---> MOO V:
 - Trigger = disable
 - universalObjectClass != null
 - Procedures:
 - none
 - Result:
 - enabled = false (fires)
 - initialized = false (no change)
 - attached = false (no change)

- MOO III ---> MOO III:
 - Trigger = commParam
 - universalObjectClass != null
 - Procedures:
 - reInitialization
 - Result:
 - enabled = true (no change)
 - initialized = true (fires again)
 - attached = false (no change)

- MOO III ---> MOO IV:
 - Trigger = modParam
 - universalObjectClass != null
 - Procedures:
 - reInitialization
 - attachment
 - Result:
 - enabled = true (no change)
 - initialized = true (fires again)
 - attached = true (fires)

- MOO III ---> MOO V:
 - Trigger = disable
 - universalObjectClass != null
 - Procedures:
 - deInitialization
 - Result:
 - enabled = false (fires)
 - initialized = false (fires)
 - attached = false (no change)

- MOO IV ---> MOO IV:
 - Trigger = modParam
 - universalObjectClass != null
 - Procedures:
 - reInitialization
 - reAttachment (may be a "handover")
 - Result:
 - enabled = true (no change)
 - initialized = true (fires again)
 - attached = true (fires again)

- MOO IV ---> MOO III:
 - Trigger = commParam
 - universalObjectClass != null
 - Procedures:
 - deAttachment
 - reInitialization
 - Result:
 - enabled = true (no change)
 - initialized = true (fires again)
 - attached = false (fires)

- MOO IV ---> MOO V:
 - Trigger = disable
 - universalObjectClass != null
 - Procedures:
 - deAttachment
 - deInitialization
 - Result:
 - enabled = false (fires)
 - initialized = false (fires)
 - attached = false (fires)

