
Simulated Railroad Framework, http://simulrr.sourceforge.net
Synopsis: 100_SrrFramework

This file valid for step 0033.10.5
Issue Date: 2019-06-09

The SMS Base
============

1 Synopsis

This paper describes a few very basic elements of the SRR/SMUOS Framework.

 - The concept of basic initialization
 - The SMS Loader.............in the file sms/SmsLoader.x3d
 - The Module Wrappers........in the files sms/SmsModuleWrapper.x3d and
 sms/SmsModuleWrapperDependent.x3d
 - The SMS Tracer.............in the file sms/SmsTracer.x3d
 - The UBO Wrapper............in the file sms/SmsUboWrapper.x3d
 - The Little Loader.MOB......in the files sms/SmuosXMobMyLittleLoader.x3d and
 sms/SmuosXMobMyLittleLoaderNs.x3d

2 Basic Initialization

When you do your first look into some X3D prototypes of the SRR/SMUOS Framework,
then you might immediately recognize there are four mysterious fields at the
beginning of each <ProtoInterface>:

<ProtoDeclare name='McCore'>
 <ProtoInterface>
 <!-- Common fields for the MASTER/DEP state machine -->
 <field accessType='outputOnly' name='sendLoaded' type='SFBool'/>
 <field accessType='inputOnly' name='receivePing' type='SFBool'/>
 <field accessType='outputOnly' name='sendPong' type='SFBool'/>
 <field accessType='inputOnly' name='receiveBasicInit' type='SFBool'/>
 <!-- Specific fields for McCore -->

These fields serve the "basic initialization" with the MASTER/DEP state machine.

Basic initialization is a means to wait with the processing, until all external
prototypes have been loaded for a scene. Thus we can avoid loosing events by
waiting until basic initialization, before we start sending events.

Each scene that contains at least one <ProtoInstance> node that points to an
external prototype, contains a MASTER script, which uses that four fields of
each <ProtoInstance> to wait with the basic initialization, until all external
prototypes have been completely loaded.

Please find a description of the concept in Appendix A.

3 The SMS Loader

The SMS Loader is a prototype, which is used
 - by the SSC Base to load/unload module related SSC Dispatchers
 - by the UBO Loader to load/unload UBOs (*not yet implemented*)
 - by the Little Loader MOB to load/unload dynamic modules or models

The SMS Loader is not currently described in detail.

http://simulrr.sourceforge.net/
http://simulrr.sourceforge.net/concepts/100_SrrFramework.pdf

4 The Module Wrappers

Currently we have got a module wrapper according to the "VRML paradigm", where
a top level module is wrapped by a <Transform> node that applies a rotation
around the y-axis and an arbitrary translation. Scaling of modules is not
currently foreseen.

Each module wrapper implements following main functions:
 - collecting
 - module name ("moduleName" (SFString)),
 - either URLs or commParam ("url" (MFString) or "commParam" (SFNode))
 - mwParam ("mwParam" (SFNode)),
 - translation ("translation" SFVec3f),
 - rotation ("rotation" SFRotation)
 before loading the module (with "commParam" or "url" whichever is the last)
 - loading the module by Browser.createVrmlFromURL()
 - setting the initial state of the module from the input during load
 - performing the basic initialization and the initialization of the module
 - "adding" the module to the transformation

The module can be loaded again after unloading. The module wrapper is supposed
to remain in the memory as long as the module is registered at the SSC.

Each module wrapper contains a <Transform> node, where the module shall be "hung
up", and it contains the script with the "module wrapper parameters".

The "module wrapper parameters" contain the field "requiredMcExtensions"
(MFString) – which is currently empty – and the field "gravity" (SFVec3f), which
is currently a constant gravity of 9,81 m/s^2 in -y – direction.

 +---+
 | The Frame |
 | +---+ |
 | | A Module Wrapper | | | | |
 | | | |
 | | +---+ | |
 | | | <Transform> Node | | |
 | | +--+ | | |
 |uiModule o-------+ A Module | | | |
 | | | | | | |
 | | +--+ | | |
 | | | | | |
 | | +---+ | |
 | | +---+ | |
 | | | Module Wrapper Parameters (gravity...)| | |
 | | | | | |
 | | +---+ | |
 | +---+ |
 +---+

TODO11 this chapter must be updated, when the dependent modules are realized.

Note: Having the module wrappers in memory independently of the actual presence
 of the module, is a preparation for some days, when dynamic modules – that
 have been registered but NOT loaded – must contribute to the gravity.

Note: Currently the main duty of module wrappers is to "wrap modules by some
 transformation". "Caring for mass and gravity as well as acceleration"
 could become a duty of the module wrappers in a later release.

Note: So we have a concept of module "position" and "orientation", but none of
"velocity", nor one of "acceleration", currently.

5 The SMS Tracer

5.1 Purpose of the SMS Tracer

It is the intention to use the SMS Tracer for
 - getting familiar with SRR/SMUOS software
 - debugging SRR/SMUOS software
 - documenting SRR/SMUOS software

The programmer can write diagnostic output to the tracer, which will be
 - output to the browser's console
 - output at the uiControl interface

Output via uiControl is intended to enable processing tracer output by external
programs via the SAI/EAI.

Each place in the code, where diagnostic output is sent to the tracer - we call
these places tracepoints - has assigned a trace level.

Only if the actual trace level of the system is equal to or greater than the
trace level of the tracepoint, then the diagnostic output will actually be
written.

Different parts of the system can have different trace levels, enabling
narrowing down the error/effect you're looking for.

5.1.1 Trace Levels

 0......no tracer output
 1......Errors (this trace level is the default setting in the system)
 2......Infos
 3......Debug Infos

Trace levels are set locally in one scene instance and must hence be set in each
required scene instance separately.

The trace levels can be set at the uiControl interface with the following input
fields of the Simple Scene Controller.

5.1.2 "traceLevelRequest" (SFInt32)

This input field sets the "classic" trace level. The "classic" tracer is not
used by the SRR/SMUOS Framework and is hence not described here.

5.1.3 "traceLevelSscBaseRequest" (MFInt32)
--
This input field sets the trace level of the SSC Base (i.e. of the client of
the SSC Base and of the clients of some SSC extensions that follow SSC Base).

The input field reacts on the first two elements of the MFInt32 array, the trace
level [0] will be applied AFTER initialization ("operational" trace level) and
the trace level [1] will be used during initialization ("initialization" trace
level).

The switchover between the two trace levels happens, when the SSC Base
issues the "common parameters" (commParam), i.e. BEFORE the module coordinators
are initialized.

5.1.4 "traceLevelCommControlRequest" (MFInt32)
--
This input field sets the trace level of the server of the SSC Base and of the
servers of some SSC extensions that follow the SSC Base.

The input field reacts on the first two elements of the MFInt32 array, the trace
level [0] will be applied AFTER initialization ("operational" trace level) and
the trace level [1] will be used during initialization ("initialization" trace
level).

The switchover from "initialization" trace level to "operational" trace level
happens, when the SSC Base issues the "common parameters" (commParam),
i.e. BEFORE the module coordinators are initialized.

When you want to trace the server of the SSC Base, be sure to have the "central
controller role" in your scene instance!

5.1.5 "traceLevelModulesRequest" (SFString)

This SFString value requests the trace levels for all(!) modules in a simple
syntax.

Just request
 <moduleName>=<tloper>[,<tlinit>][;<moduleName>=<tloper>[,<tlinit>]]...

for as many modules as you like, where
 <moduleName> is the name of the module in question ('*' as a place holder is
 allowed)
 <tloper> is the "operational" trace level
 <tlinit> is the "initialization" trace level.

If you omit <tlinit>, it will be set to <tloper>.

The switch over from "initialization" trace level to "operational" trace level
happens, when the module coordinator issues the "module parameters" (modParam),
i.e. BEFORE the MIDAS Objects are initialized.

The SRR/SMUOS Framework will automatically add a leading term "*=1,1;" to set
the trace level of all modules that you do not specify.

5.1.6 "traceLevelObjectsRequest" (SFString)

This SFString value requests the trace levels for all(!) objects in a simple
syntax.

The syntax and logic is similar to (3.1.5), but <dispatcherName>-<objId> is used
instead of <moduleName> and only one trace level is used (<tlover>, the
"overall" trace level").

When you want to trace the <dispatcherName>-<objId>.ObCo instance of a MIDAS
Object, be sure to have the "MOC role" for the parent/current module in your
scene instance!

5.2 External View of the Tracer

The previous chapter told us, how the tracer can be used by the gamer, when he
sets the various trace levels of the Simple Multiuser Scene.

The following sections will tell us, how the programmers of MIDAS Objects, SSC
Extensions and MC Extensions and the authors of Models, Modules and Frames can
use the tracer via its external interface eiTracer.

 +---+
 | Some part of the scene |
 | |
 | +-----------------------+ |
 | eiTracer o---+ SMS Tracer | |
 | | | |
 | +-----------------------+ |
 +---+

Where "Some part of the scene" can be
 - either a MIDAS Object or
 - an SSC Extension or
 - an MC Extension or
 - a Model or
 - a Module or
 - the Frame.

 - eiTracer is the external interface of the SMS Tracer prototype

5.2.1 eiTracer – The External Interface of the SMS Tracer Prototype

The following table shows the use cases of the tracer that are available in each
state of the tracer. The tracer can be either initialized or un-initialized.

 Un-initialized | initialized
-----------------------------+----------------------------------
 Initialization | Initialization
-----------------------------+----------------------------------
 | Setting the Trace Level
-----------------------------+----------------------------------
 | Output L1 Errors
-----------------------------+----------------------------------
 | Output L2 Infos
-----------------------------+----------------------------------
 | Output L3 Debug Infos
-----------------------------+----------------------------------

5.2.1.1 Initialization of a Tracer Instance

The SMS Tracer needs the pointer to the "Common Parameters", because it uses
some basic services of the "Common Parameters" to output the tracer output to
the Web3D browser's console and to the uiControl interface of the Simple Scene
Controller.

Some "Tracing Cases" need the pointer to the "Module Parameters" as an additio-
nal information, whether the tracer is contained in a module or not.

Hence the SMS Tracer can be initialized or re-initialized either by "commParam"
or by "modParam". Changing between both kinds of being initialized is possible.

 General Fields at the eiTracer Interface
 --
 - "subsystem" / "ssVersion" / "fileName" identify the software
 that instantiates the tracer and that uses
 the tracer to output the L1, L2 or L3 info
 - "instanceId" identifies the instance of the software that instan-
 tiates the tracer. Please refer to 011_NamingRules
 for more information about software instances (VLFs)

 The "Tracing Cases"

 Tracing Case | universalObjectClass | objId | modParam
 =================+======================+=======+=========
 Frame | - | - | -
 Astral Object | - | X | -
 Module | - | - | X
 Bound Object | - | X | X
 Forbidden | X | - | X/-
 Unbound Object | X | X | X/-
 SSC Parm. Object | X | X | -

Following output will be present in addition to the concrete output of the trace
point (which is set by the programmer):

Tracing Case | instanceId | objId | moduleName | subsystem/fileName/ssVersion
================+============+=======+============+=============================
Frame | X | - | - | X
Astral Object | X | X | - | X
Module | X | - | X | X
Bound Object | X | X | X | X
Forbidden | - | - | - | -
Unbound Object | X | X | X/- | X
SSC Parm. Object| X | X | - | X

5.2.1.2 Setting the Trace Level of a Tracer Instance
--

The field "localTraceLevel" (SFInt32) can be used to set the local trace level
of THIS tracer instance.

This is possible for the "Tracing Cases"
 - Frame and
 - Module

The other "Tracing Cases", which are about objects and models, namely
 - Astral Object
 - Bound Object
 - Unbound Object
 - SSC Parm. Object

take their trace levels automatically from the "commParam.traceLevelObjects"
field and report the resulting trace level at the "localTraceLevel" field.

5.2.1.3 Output L1 Errors via a Tracer Instance
--
The eiTracer field "errLog" (SFInt32) can be used to set the overall "errorNo"
parameter in the "commParam" and to output the corresponding "L1 Error Message".

The programmer cannot influence the "L1 Error Messages", which are predefined in
the Common Parameters. You can search for "errorStrings" in prototype "SscBase".

http://simulrr.sourceforge.net/concepts/011_NamingRules.pdf

5.2.1.4 Output L2 Infos via a Tracer Instance

The eiTracer fields "freeTextInfo" (MFString), "messageReceived" (MFString),
"sendMessage" (MFString), "eventReceived" (MFString), "sendEvent" (MFString),
"newState" (MFString), "startTimer" (MFString), "stopTimer" (MFString),
"timerExpired" (MFString), "instanceStarted" (MFString) and
"instanceStopped" (MFString) can be used to output L2 Info via the tracer.

The field "freeTextInfo" just outputs "L2 Info Text", as it was given by the
programmer of the trace point.

The other fields interpret the first string of the MFString array in a specific
way and output the other strings additionally (as an "L2 Info Text"). The first
string is split into parameters, which are separated by commas.

"messageReceived" firstString = "<sender>,<messageType>,<messageId>"
"sendMessage" firstString = "<receiver>,<messageType>,<messageId>"
"eventReceived" firstString = "<origin>,<field>"
"sendEvent" firstString = "<destination>,<field>"
"newState" firstString = "<stateId>"
"startTimer" firstString = "<timerId>"
"stopTimer" firstString = "<timerId>"
"timerExpired" firstString = "<timerId>"
"instanceStarted" firstString = "<instanceId>"
"instanceStopped" firstString = "<instanceId>"

Example:

tracerControl.eventReceived = new MFString(
 extObjId + '@uiObj,bindBeamerDestination',
 'value=' + Value,
 'user requests to bind beamer destination');

The above call of the tracer outputs a trace point, after an event has been
received,
 - where the event's "origin" is extObjId + "@uiObj" and
 - the event's "field" is "bindBeamerDestination"

Two additional lines of "L2 Info Text" will be output,
 - one with "value=" + Value and
 - one with "user requests to bind beamer destination".

5.2.1.5 Output L3 Debug Infos via a Tracer Instance

The eiTracer field "freeTextDebug" (MFString) can be used to output L3 Debug
Info via the tracer. It just outputs the "L3 Debug Info Text", as it was given
by the programmer of the trace point.

6 The UBO Wrapper

Tbd.

TODO11 this chapter must be updated, when the UBOs are realized.

7 The Little Loader MOB

The SMUOS Framework provides the prototypes "MyLittleLoader" and
"MyLittleLoaderNs", which can be used

 - as loader for dynamic modules (DynMos)initialized (MOO I)
 - as loader for dynamic bound objects (DynBos)attached (MOO II)

7.1 If Initialized in MOO I, the Little Loader MOB Operates as Loader for DynMos
--

After initialization, the Module Loader reads the "Dynamic Module Configuration"
(Dmc) from commParam, where they have been stored by the SSC Base. Actually they
are contained in the "Dynamic Element Description" (DED), which holds informa-
tion about ALL dynamic elements.

The DED contain among others following fields with the description of all
dynamic modules:

 - the following fields are processed by the Little Loader MOB (standard)
 - moduleNames (MFString) names of all dynamic modules
 - moduleUrls (MFString) URLs of all dynamic modules

 - the following field is processed by the module wrapper (content depends on
 the type of the wrapper and is encoded by name=value, semicolon-separated)
 - moduleParameters (MFString)... e.g. translation and rotation of module

 - the following fields are specific to the SrrTrains demo layout, they are
 processed directly by the main file
 - proxiCenters (MFVec3f) center points of the proxi sensors
 - proxiSizes (MFVec3f) sizes of the proxi sensors

We see, the Little Loader MOB supports the author with some basic topics of
dynamic modules, e.g. registration, deregistration, loading, unloading.

However, the WHY the module is to be loaded or unloaded, e.g a trigger by some
proxi sensor, has still to be implemented by the author.

7.1.1 The Module Loader provides the following fields on its external interface

- <field accessType='inputOutput' name='supportedSmuosExtensions'
type='MFString'/>

The field "supportedSmuosExtensions" must list all well-known-IDs of all SSC
Base Extensions that shall be supported by the present instance of the Loader.

How can we understand this? Each "moduleName" in the DED is prefixed with the
WKI of the SSC Extension that must be present to support the module wrapper (if
any). Now the Module Loader searches for this SSC Extension (if any), where it
is referred to the URL of the Module Wrapper that must be loaded. Otherwise it
looks for the URL of the default Module Wrapper at the SSC Base.

- <field accessType='outputOnly' name='registerModules' type='MFString'/>
- <field accessType='inputOutput' name='registeredModules' type='MFString'/>

The fields "registerModules" and "registeredModules" are connected to the fields
of the same name of the SSC Base. Once the SSC is initialized, it reports the
commParam. With the commParam now also the Module Loader is initialized, reads
the contents of the DED and registers the dynamic modules by "registerModules".
Throughout the simulation, the SSC keeps the list of registered modules up to
date in the "registeredModules" field, which contains both dynamic and static
modules.

<field accessType='inputOutput' name='dynMods' type='MFNode'/>
<field accessType='outputOnly' name='moduleWrapperUnloaded' type='SFInt32'/>
<field accessType='inputOutput' name='moduleWrapperParameters' type='SFString'/>
<field accessType='outputOnly' name='moduleWrapperLoaded' type='SFInt32'/>
<field accessType='inputOnly' name='loadModule' type='SFInt32'/>
<field accessType='inputOnly' name='unloadModule' type='SFInt32'/>

As soon as the module wrapper has been loaded (which is done immediately after
registration), the Module Loader logs in with the field "moduleWrapperLoaded".
The value of this event points to the module wrapper in the "dynMods" field and
allows the frame to set the proprietary parameters of the module from
"moduleWrapperParameters".

7.1.2 Loading a dynamic module

If the frame decides to load a registered dynamic module, then it must pass the
moduleIx to the Module Loader in the "loadModule" field.

This will ensure that the module, if it was already loaded, will be initially
unloaded and then freshly loaded.

Now the module is actually being loaded and initialized.

7.1.3 Disabling and unloading a dynamic module

The index of a module (the so-called moduleIx) is the index at which the SSC
outputs the module name in the field "registeredModules".

Now, if the frame wants to unload a dynamic module, it must pass the module's
moduleIx to the "unloadModule" field.

Furthermore, the Module Loader automatically unloads a dynamic module, if it
has been loaded and when the SSC deletes the module name from the
"registeredModules" field (if it is being deregistered).

7.2 If Attached in MOO II, the Little Loader MOB Operates as Loader for DynBos
--

TODO11 this chapter must be updated, when the model loader is realized.

Appendix A – Basic Initialization
=================================

==
Concept for MASTER/DEP State Machine ("Load Sensor" for External Prototypes)
==

Motivation: (a)
========== VRML/X3D Browsers may load files asynchronously.
 I.e., if a file refers to other files, then it may happen that
 one file finishes loading before the other files finish.
 Hence it may happen that events passed from a node of one file
 to a node of another file may get lost.
 This is particularly true for events that are sent from the
 initialize() function of a Script node over file borders.
 (b)
 Sometimes, we load parts of the scene dynamically (using the
 Browser.createVrmlFromURL() method). It may happen that the
 loaded part of the scene gets initialized, before we insert it to a
 Group node and before we create dynamic routes to exchange events
 with the loaded part of the scene. Hence the simple solution of just
 outputting an event from the loaded part of the scene, as soon as it
 gets initialized, may fail.

Summary:
=======
 A simple concept is developed, where each external prototype has to contain
 a "dependent" Script node (DEP) and where the loading file (the file which
 contains the proto instances) contains a "master" Script node (MASTER) and
 some routes between the proto instances and the MASTER.
 As soon as all external prototypes are loaded, the MASTER distributes
 a "basicInit" event to all prototypes. Hence the prototypes can exchange
 events arbitrarily during "basic initialization" without loosing events.
 The term "basic initialization" refers to the initialization, which is
 triggered by the mechanisms of the present concept, it is performed AFTER
 the "normal Web3D initialization" (initialize()).

Scenario I: MASTER and DEP are loaded and initialized synchronously
==========

 MASTER DEP
 ______ ___
 | |
(1)|"ping" "loaded"|(1)
 |----------| |----------|
 |"loaded" | | |
(2)|<---------|-------- "ping"|
 | ------------------>|(3)
 |"ping" "pong"|
 |----------| |----------|
 |"pong" | | |
(5)|<---------|-------- "ping"|
 | ------------------>|(4)
 | |
 | |
 | |
 | |
(6)|"basicInit" "basicInit"|
 |---------------------------->|(7)
 | |

 (1)...MASTER and DEP are initialized, send "ping" and "loaded", resp.
 (2)...MASTER receives "loaded" and sends another "ping"
 (3)...DEP receives "ping" and responds with "pong" (first "ping")
 (4)...DEP receives a second "ping" and ignores it
 (5)...MASTER receives "pong" and increments DEP counter
 (6)...as soon as DEP counter reaches the maximal value (now all DEPs are
 loaded and initialized), then MASTER sends "basicInit"
 (7)...all DEPs are "basically initialized" now, they may exchange events
 arbitrarily without any event getting lost

Scenario II: MASTER is loaded and initialized first
===========

 MASTER

 |
(1)|"ping"
 |----------|
 | |
 | |
 | ------------------> (2)
 |
 |
 |
 |
 | DEP
 | ___
 | |
 | "loaded"|(3)
 | |----------|
 |"loaded" | |
(4)|<------------------ |
 |"ping" |

	"ping"
------------------>	(5)
"pong"	

"pong"	
(6)	<------------------
(7)	"basicInit" "basicInit"
---------------------------->	(8)

 (1)...MASTER is initialized and sends "ping"
 (2)...the first "ping" gets lost
 (3)...DEP is initialized and sends "loaded"
 (4)...MASTER receives "loaded" and sends another "ping"
 (5)...DEP receives "ping" and responds with "pong"
 (6)...MASTER receives "pong" and increments DEP counter
 (7)...as soon as DEP counter reaches the maximal value (now all DEPs are
 loaded and initialized), then MASTER sends "basicInit"
 (8)...all DEPs are "basically initialized" now, they may exchange events
 arbitrarily without any event getting lost

Scenario III: DEP is loaded and initialized first
============

 DEP

 |
 "loaded"|(1)
 |----------|
 | |
(2) <------------------ |
 |
 |
 |
 |
 MASTER |
 ______ |
 | |
(3)|"ping" |

	"ping"
------------------>	(4)
"pong"	

"pong"	
(5)	<------------------
(6)	"basicInit" "basicInit"
---------------------------->	(7)

 (1)...DEP is initialized and sends "loaded"
 (2)...the "loaded" gets lost
 (3)...MASTER is initialized and sends "ping"
 (4)...DEP receives "ping" and responds with "pong"
 (5)...MASTER receives "pong" and increments DEP counter
 (6)...as soon as DEP counter reaches the maximal value (now all DEPs are
 loaded and initialized), then MASTER sends "basicInit"
 (7)...all DEPs are "basically initialized" now, they may exchange events
 arbitrarily without any event getting lost

Resulting Description of the Concept
====================================
(A) The loading file contains a Script node "MASTER" and routes between the
 MASTER and the proto instances
(B) Each proto declare of the external prototypes contains a Script node "DEP"
(C) In case of nested prototypes, the Scripts in the intermediate prototypes
 take care about the "MASTER duties" and about the "DEP duties"
(D) Each MASTER has an "initializeOnly" "SFInt32" that indicates the number of
 dependents ("numDeps")
(E) Each MASTER has an "outputOnly" "SFBool" "sendPing"
(F) Each DEP has an inputOnly" "SFBool" "receivePing"
(G) Each DEP has an "outputOnly" "SFBool" "sendLoaded"
(H) Each MASTER has an "inputOnly" "SFBool" "receiveLoaded"
(I) Each DEP has an "outputOnly" "SFBool" "sendPong"
(J) Each MASTER has an "inputOnly" "SFBool" "receivePong"
(K) Each MASTER has an "outputOnly" "SFBool" "sendBasicInit"
(L) Each DEP has an "inputOnly" "SFBool" "receiveBasicInit"
(M) Each MASTER has an "inputOutput" "SFInt32" "depCounter" "0"
(N) Each DEP has an "inputOutput" "SFBool" "ignorePing" "true"
(O) Behaviour of the MASTER
 function initialize()
 {
 if (numDeps)
 sendPing = true;
 else
 sendBasicInit = true;
 }
 function receiveLoaded()
 {
 sendPing = true;
 }
 function receivePong()
 {
 if (depCounter < numDeps)
 {
 if ((++depCounter) >= numDeps)
 {
 sendBasicInit = true;
 }
 }
 }

(P) Behaviour of the combined MASTER/DEP
 function initialize()
 {
 if (numDeps)
 sendPing = true;
 else
 iAmLoaded();
 }
 function iAmLoaded()
 {
 ignorePing = false;
 sendLoaded = true;
 }
 function receiveLoaded()
 {
 sendPing = true;
 }
 function receivePing()
 {
 if (!ignorePing)
 {
 ignorePing = true;
 sendPong = true;
 }
 }
 function receivePong()
 {
 if (depCounter < numDeps)
 {
 if ((++depCounter) >= numDeps)
 {
 iAmLoaded();
 }
 }
 }
 function receiveBasicInit()
 {
 // TO DO: do my basic initialization here
 sendBasicInit = true;
 }

(Q) Behaviour of the DEP
 function initialize()
 {
 ignorePing = false;
 sendLoaded = true;
 }
 function receivePing()
 {
 if (!ignorePing)
 {
 ignorePing = true;
 sendPong = true;
 }
 }
 function receiveBasicInit()
 {
 // TO DO: do my basic initialization here
 }

