
Simulated Railroad Framework, http://simulrr.sourceforge.net
Synopsis: 100_SrrFramework

This file valid for step 0033.10.5
Issue Date: 2019-06-09

The Module Coordinator
======================

1 Synopsis

The Module Coordinator is the part of the SRR/SMUOS Framework that is intended
to coordinate the SRR/SMUOS Framework within one module.

The present paper describes the MC Base, which is actually a part of the SMUOS
Framework and it gives some basic information about how to extend the MC Base
by your own MC Extensions.

The MC Extension "Train Manager" is actually a part of the SRR Framework and
it is described at 221_ModuleCoordinatorTm.

The overall architecture of the MC is shown in following figure:

+--+
| Module Coordinator (MC) |
| |
| +-----------------------------+ +-----------------------------+ |
	MC Base (part of SMUOS)		MC Extension (3rd party)						
			+-----------------------------+						
			+-	MC Extension (3rd party)					
					+-----------------------------+				
					+-	MC Extension (3rd party)			
			+-						
	+-------------------------+	+---			+-------------------------+				
		MC Core (part of SMUOS)			+-		MC Core (part of SMUOS)		
				+---					
	+-------------------------+		+-------------------------+						
+-----------------------------+ +-----------------------------+									
+--+

The "Base" of the Module Coordinator consists of an X3D prototype, which is
contained in the file SmuosMcBase.x3d – see chapter 3 for how to use the MC Base
and chapter 4.1 on how the MC Base is built internally.

Additionally, all parts of the MC may use the "MC Core" subsystem, which is
contained in the file SmuosMcCore.x3d.
The application of MC Core is described in chapter 4.2.

2 The Purpose of the Module Coordinator

The module coordinator supports the module author with following aspects of an
SrrTrains layout / Simple Multiuser Scene.
 - module attach/detach
 - module activation/deactivation
 - initialization of MIDAS Objects
 - disabling of MIDAS Objects

http://simulrr.sourceforge.net/
http://simulrr.sourceforge.net/concepts/221_ModuleCoordinatorTm.pdf
http://simulrr.sourceforge.net/concepts/100_SrrFramework.pdf

3 External View (uiMod, modParam and eiMod)

When a module has been loaded and hence the contained <ProtoInstance>
"McBase.x3d" has been loaded, then the Module Coordinator (Base) is in mode of
operation "LOADED" (MOO "LOADED").

After some preparation (see below), the frame sends the commParam event to the
module and hence to the Module Coordinator and triggers its initialization.

After successful initialization the Module Coordinator outputs the SFNode event
"initialized", that points to some internal node.

An event initialized=null indicates unsuccessful initialization.

The "initialized" event should be forwarded to the frame (via the interface
uiModule) - at least in case of dynamic modules - to indicate success/failure.

After successful or unsuccessful initialization, the module coordinator outputs
the SFNode event "modParam", that points to the module parameters – see chapter
5.1 for a detailed description of the module parameters.

The "modParam" event can be immediately <ROUTE>d to the external interfaces of
all bound models and MIDAS objects (via the interfaces uiObj) to trigger their
initialization and attachment.

 THE FRAME
 o uiModule
 |
 A MODULE
 o
 | uiMod
 +--------+--------+
 MOB eiMod o---+ SSC |
 +-----------------+
Above figure sketches the "user interface" uiMod and the "external interface"
eiMod. They are used by the module and by other parts of the SRR/SMUOS Frame-
work, respectively.

Both interfaces are extended by MC Extensions, as described at chapters 3 of
051_Extensibility and 221_ModuleCoordinatorTm.

http://simulrr.sourceforge.net/concepts/221_ModuleCoordinatorTm.pdf
http://simulrr.sourceforge.net/concepts/051_Extensibility.pdf

3.1 MOO Diagram (MOOD)

 MOO "LOADED"
 |
 +-------------------------------+
 | |
 | --> initialized != null | --> initialized = null
 | --> modParam (disable=false) | --> modParam (disable=true)
 | |
 V |
 MOO II |
 | |
 | --> initialized = null |
 | --> modParam.disable=true |
 | |
 |<------------------------------+
 |
 V
 MOO V

3.2 Use Case Matrix (uiMod Interface)

Following use cases are available via uiMod in following MOOs:

 |MOO "LOADED" |MOO II |MOO V |
 +----------------+----------------+-------------------------+
 | Preparation | - | - |
 +----------------+----------------+-------------------------+
 | Initialization | - | - |
 +----------------+----------------+-------------------------+
 | ModuleActivity | ModuleActivity | - |
 +----------------+----------------+-------------------------+
 | | DisableModule | - |
 +----------------+----------------+-------------------------+

Table 1: State Event Matrix of the Module Coordinator

The State Event Matrix displays, which use case is available in which mode of
operation (MOO), either MOO "LOADED" or MOO II (attached) or MOO V (disabled).

The following sections provide a detailed description of all use cases.

3.2.1 Preparation

Before triggering the initialization of the module coordinator, the module
instantiates all module coordinator extensions and provides their addresses in
the MFNode field "mandatoryModCoordExtensions" and "optionalModCoordExtensions".

Additionally, the module forwards the module name and the module wrapper parame-
ters from the uiModule interface to the module coordinator (SFString
"moduleName" and SFNode "mwParam", respectively).

3.2.2 Initialization

The initialization of a module coordinator is triggered by the commParam event,
which is forwarded by the frame and the module from the Simple Scene Controller
to the external interface uiMod of the module coordinator.

Following things will happen during the initialization of a module coordinator:
 1) the module coordinator extensions will be initialized
 2) the module coordinator will announce itself at the Simple Scene Controller
 3) the SSC will send a CSCR "attachModule" to the central controller
 4) if not yet registered, the module name and moduleIx will be registered
 in the commState implicitely
 5) the module will be attached in the commState
 6) as soon as the commState has been distributed, the SSC Base will physi-
 cally attach the announced module coordinator
 6a) the module coordinator extensions will receive the moduleIx to be able
 to attach themselves at their SSC extensions
 7) the attached module will output a reference to the "module parameters",
 modParam, which will be forwarded to the MIDAS Objects of the module*)
 8) additionally the module coordinator will indicate successful initializa-
 tion with an event initialized!=null
*) The parameter "modParam.disable" will be "false" in case of successful
 initialization, which will lead to an initialization of the MIDAS Objects.
 In case of unsuccessful initialization, "modParam.disable" will be "true",
 leading to disabled MIDAS Objects (see also the use case "DisableModule").

3.2.3 ModuleActivity

A module can request a change of its own activity with one of the two events
 activateRequest and deactivateRequest
at the external interface uiMod of the module coordinator.

Additionally, the SSC Base has got some fields at his user interface, so that
the frame can influence module activity, too (please refer to chapter "Use Case
ModuleActivity" in 121_SimpleSceneController).

The intention of module activity is to save CPU resources, when a module is not
within the focus of a user (e.g. if he doesn't look at the module).

Module activity is a matrix, i.e. it can be different in each scene instance
(depending on the behaviours of the different users).

It's up to the module author, how he triggers module activation/deactivation
(probably with some kind of environment sensor, e.g. a proximity sensor).

The module coordinator will inform all MIDAS Objects in his responsibility about
the activity of the module and it will give feed back to the module about the
actual activity state.

It's a rule that MIDAS Objects should avoid extensive calculations (e.g. calcu-
lated animations), when their parent module is inactive.

One scene instance of all scene instances that have a distinct module activated,
gets the so-called MOC role (module controller role). This scene instance is
dedicated to perform calculations, that must be done centrally for a module
(e.g. maintaining the global states of MIDAS Objects).

The Object Controller roles of the MIDAS Objects ("OBCO" Roles) follow the MOC
roles of their parent modules (see 301_MidasObjects).

The frame can request the MOC role for modules in his scene instance (otherwise
the central controller will assign MOC roles, so that one and only one MOC
exists for each module, which is active in at least one scene instance).

http://simulrr.sourceforge.net/concepts/301_MidasObjects.pdf
http://simulrr.sourceforge.net/concepts/121_SimpleSceneController.pdf

3.2.4 DisableModule

While module deactivation is a means to save CPU resources, dynamic modules can
be unloaded completely to save CPU resources *and* memory.

Loading and unloading of dynamic modules is left to the frame, but before a
module is unloaded, it should be detached from the Simple Scene Controller and
as a consequence all MIDAS Objects of the module will be disabled.

Detachment of a module can be triggered by one of two events:

 1) a frame decides to locally unload a dynamic module and as a preparation
 sets disable="now" at the external interface uiModule of the module.

 2) a module is deregistered globally and the Simple Scene Controller detaches
 the module locally, after having received the commState.

ad 1) the disable="now" event will be forwarded by the module to the external
interface uiMod of the module coordinator and trigger a detachment at the SSC

ad 2) Please refer to chapter "Use Case DynModRegistration" in
121_SimpleSceneController and to the field "deregisterModules", which is
described there.

ad 1) + 2)
The result of detachment will be a moduleIx=-1 sent from the SSC to the module
coordinator and hence triggering the disabling of the MIDAS Objects of the
module.

Active nodes other than MIDAS Objects must be disabled by the module author
(this can be achieved by <ROUTE>ing the "enabledOut" field of the module
coordinator to the "enabled" fields of those nodes).

3.3 Interworking with MIDAS Objects (modParam/eiMod)
--
The MC can use the "module parameters" (see chapter 5.1) to broadcast infor-
mation to all parts of the module. This is actually used to inform MIDAS objects
about the activity of the module.

When a part of the module knows the "modParam", then it can access the eiMod
interface of the MC Base.

The field "getModCoordExtension" can be used to assert the presence of an MC
Extension in the "modParam.extensions" field.

http://simulrr.sourceforge.net/concepts/121_SimpleSceneController.pdf

4 Internal View

4.1 Internal Information about the Module Coordinator

The Simple Scene Controller supports the module coordinator.
To support the module coordinator, the SSC Base
 - provides some fields at the eiControl interface (refer to section 4.1.1)
 - expects some fields at the eiControl interface (refer to section 4.1.2)
4.1.1 Fields of the SSC Base at eiControl

"announceModule" (SFNode)
 see 3.2.2. "Initialization": during initialization the module coordinator
 sends a "this"-pointer to the SSC Base. The SSC Base stores the pointer in a
 temporary list of modCoords and attaches the module at the commState
 (central controller).
 After the central controller has answered, the SSC Base stores the pointer
 in the list of modCoords and sends an event "registered"=<moduleIx> to the
 module coordinator.
 In the unsuccessful case the SSC Base answers with "registered"="-1".
"deannounceModule" (SFNode)
 see 3.2.4 "DisableModule": when a frame decides to unload a module, it sets
 disable="now" at the uiModule interface. As a reaction, the module coordina-
 tor sends a "deannounceModule"="this" event to the SSC Base and hence
 triggers the SSC Base to detach the module coordinator (delete it from the
 list of modCoords and send "registered"="-1" to the detached modCoord).
 Additionally, the SSC Base will send a detach indication to the central
 controller, that will detach the module in the commState.
"activateModRequest" (SFInt32)
 see 3.2.3 "ModuleActivity": an attached module coordinator can send the own
 moduleIx to the SSC Base to trigger it's activation.
"deactivateModRequest" (SFInt32)
 see 3.2.3 "ModuleActivity": an attached module coordinator can send the own
 moduleIx to the SSC Base to trigger it's DEactivation.
4.1.2 Fields of the Module Coordinator at eiControl

"registered" (SFInt32)
 With this field, the SSC Base reports the moduleIx to the module coordina-
 tor, in one of the following situations
 - <moduleIx> during the initialization of the module coordinator, after
 the module has been attached.
 Reporting the moduleIx leads to initialization of the MIDAS Objects.
 - "-1" after the module has been detached (on own request or on foreign
 request), or after unsuccessful attachment.
 Reporting "-1" leads to disabling the MIDAS Objects
"setActivated" (SFInt32)
 see 3.2.3 "ModuleActivity": "setActivated" is a bit field, where the bits
 have following meaning:
 - 1 (bit 0): scene instance took the MOC role for this module
 - 2 (bit 1): scene instance lost the MOC role for this module
 - 4 (bit 2): scene instance activated this module
 - 16 (bit 4): scene instance deactivated this module
 This information will be forwarded to all MIDAS Objects of the module (via
 modParam) and to the module (via uiMod).
"sessionIds" (MFInt32)
 see 3.2.3 "ModuleActivity": the SSC Base updates the list of all sessionIds,
 in whose scene instances the module is active. Some MIDAS Objects need this
 information, which will be forwarded to all MIDAS Objects via modParam.
"setTraceLevel" (MFString)
 The module coordinator maintains a dynamic route from
 commParam.traceLevelModules to this input field. Everytime, when the SSC
 Base updates the MFString, it will be scanned for entries, that can apply
 to the current module name and the actual trace levels of the module will
 be updated.

4.2 How to Implement an MC Extension (McExt)
--
Chapter 3 describes the external interfaces uiMod and eiMod – i.e. How the MC
can be *used* by modules and by MIDAS Objects.

Now,
 - the uiMod interface can be extended by MC Extensions (uiMod(WKI))
 - the eiMod interface can be extended by MC Extensions (eiMod(WKI))
 - the MC Base itself and the MC Core provide services to the MC Extension
 which can be described by describing the miMod interface and by descri-
 bing the eiMcCore interface, respectively

 A M O D U L E

 uiMod uiMod(WKI)
 o o
 | |
 +-------|----------------------|---------+
 | MC | | |
 | +----+----+ +------+------+ |
 | | McBase | | McExt(WKI) | |
 eiMod(WKI) o------------------------------+ | |
 | | | eiMcCore o | |
 eiMod o---------+ | miMod | +----|----+ | |
 | | +-o)---------+ McCore | | | | | |
 | | | | | | | |
 | | | | +---------+ | |
 | +---------+ +-------------+ |
 +--+

Note: WKI is the "well-known-id", which identifies the MC Extension (please
 refer to 011_NamingRules for details).

4.2.1 The Extension of uiMod

Each MC Extension (McExt) is free to add fields to the uiMod interface, we
denote these extensions as uiMod(WKI), where WKI is the "well-known-id" of the
MC Extension.
uiMod(WKI) of the "Train Manager" is described at 221_ModuleCoordinatorTm.

4.2.2 The Extension of eiMod

Each MC Extension (McExt) is free to add fields to the eiMod interface, we
denote these extensions as eiMod(WKI), where WKI is the "well-known-id" of the
MC Extension.
eiMod(WKI) of the "Train Manager" is described at 221_ModuleCoordinatorTm.

4.2.3 The Minimum Interface miMod of all SSC Extensions

Following fields are handled directly by the contained "McCore" prototype and
should be <connect>ed to the interface eiMcCore:

 - 'parentInstance' (SFString), 'modParam' (SFNode), 'disable' (SFTime) and
 - 'enabledOut' (SFBool)

The field "wellKnownId" (SFString) must be set by the McExt during basic ini-
tialization, which must be finished by "basicallyInitialized" (SFBool).

The fields "startAttachment" (SFInt32), "initialized" (SFNode) and
"attachmentFinished" (SFNode) must be used for attachment of the McExt.

The field "traceLevelControl" (MFInt32) can be used to inherit the trace level
from the MC Base.

http://simulrr.sourceforge.net/concepts/221_ModuleCoordinatorTm.pdf
http://simulrr.sourceforge.net/concepts/221_ModuleCoordinatorTm.pdf
http://simulrr.sourceforge.net/concepts/011_NamingRules.pdf

4.2.4 The external Interface of McCore (eiMcCore)

 +--+
 | MC Extension |
 | |
 | +---+ |
 | eiMcCore | MC Core | |
 (4.2.4.1) | o-------------- | |
 | | | |
 | +---+ |
 | |
 +--+
4.2.4.1 The Fields of the McCore Prototype
--
4.2.4.1.1 Fields for the external interface of an MC Extension
--
- get information from the parent part of the MC
<field accessType='inputOutput' name='parentInstance' type='SFString' value=""/>
<field accessType='inputOutput' name='refinedClassPaths' type='MFString'
value='"McBase"'/>
<field accessType='inputOutput' name='mandatoryMcExtensionsIn'
type='MFNode'></field>
<field accessType='inputOutput' name='optionalMcExtensionsIn'
type='MFNode'></field>
<field accessType='inputOnly' name='modParamIn' type='SFNode'/>
<field accessType='inputOnly' name='disableIn' type='SFTime'/>
<field accessType='inputOnly' name='startAttachment' type='SFInt32'/>
- report the state of the MC Extension to the parent part of the MC
<field accessType='inputOutput' name='disabled' type='SFBool' value='false'/>
<field accessType='inputOutput' name='enabledOut' type='SFBool' value='true'/>
<field accessType='inputOutput' name='initialized' type='SFNode' value="NULL"/>
<field accessType='inputOutput' name='attachmentFinished' type='SFNode'
value="NULL"/>
4.2.4.1.2 Fields provided internally by/to the MC Extension

<field accessType='inputOutput' name='traceLevelControl' type='MFInt32'
value='1,1'/>
<field accessType='inputOutput' name='modParamExtIn' type='SFNode'
value='NULL'/>
<field accessType='inputOutput' name='requiredSscExtensionsIn' type='MFString'
value=''/>
<field accessType='inputOnly' name='setModuleName' type='SFNode'/>
- output lifetime parameters towards the MC Extension
<field accessType='inputOutput' name='mcInstance' type='SFString'
value='[McInstance]'/>
<field accessType='inputOutput' name='tracerInstanceIdCoord' type='SFString'
value='[moduleName]-[instanceIdMod].Coord'/>
<field accessType='inputOutput' name='assertedOptionalMcExtensions'
type='MFNode'></field>
<field accessType='inputOutput' name='assertedSscExtensions'
type='MFNode'></field>
- output dynamic parameters towards the MC Extension
<field accessType='outputOnly' name='heartbeat' type='SFFloat'/>
<field accessType='inputOutput' name='modParamExt' type='SFNode' value="NULL"/>
<field accessType='inputOutput' name='oldModParamExt' type='SFNode'
value="NULL"/>
<field accessType='inputOutput' name='moduleIx' type='SFInt32' value="-1"/>
<field accessType='inputOutput' name='oldModuleIx' type='SFInt32' value="-1"/>
<field accessType='inputOutput' name='currentProcedure' type='SFString'
value="nil"/>
- coordinate the execution of procedures by the MC Extension -->
<field accessType='outputOnly' name='startProcedure' type='SFBool'/>
<field accessType='inputOnly' name='procedureFinished' type='SFBool'/>

5 Additional Info

5.1 The Module Parameters

The term "module parameters" refers to a <Script> node, which is a part of the
McBase prototype and which is accessible by all parts of the module.

After initialization of the module, the SFNode event "modParam" is forwarded
from the Module Coordinator to the MIDAS Objects of the module.

5.1.1 Core Information

The following fields are set by McCore

enabled(SFBool)..................true, as long as the MC Base is enabled
initialized(SFBool)..............true, if all mandatory MC Extensions have been
 successfully initialized
moduleIx(SFInt32)................the valid moduleIx of the module. Does not
 change between successful attachment and
 disabling, when it will become -1
extensions(MFNode)...............Pointers to all successfully initialized
 extensions of the Module Parameters (please
 refer to 051_Extensibility)

5.1.2 Access to the Common Parameters

The modParam of each module contain an SFNode that points to the "Common
Parameters" of the Simple Scene Controller (refer to 121_SimpleSceneController)

commParam(SFNode)................points to the common parameters

5.1.3 General Module Information

The following parameters give general information about the module, which
contains this module coordinator.

version(SFFloat).................version of the module coordinator base module
moduleName(SFString).............the valid module name, that has been set by
 the frame
mwParam(SFNode)..................the module wrapper parameters of the module
gravity(SFVec3f).................the current gravity within the module

http://simulrr.sourceforge.net/concepts/121_SimpleSceneController.pdf
http://simulrr.sourceforge.net/concepts/051_Extensibility.pdf

5.1.4 Data Distribution to all MIDAS Objects
--
The following parameters are used to distribute information from the module
coordinator to all MIDAS Objects of the module.

disable(SFBool)..................an SFBool event "true" at this field disables
 all MIDAS Objects of the module
sessionIds(MFInt32)..............this field distributes a list of all scene
 instances, in which this module is active
 (used by "animated" MIDAS Objects)
sessionIdLeft(SFInt32)...........this field reports every scene instance that
 has left the game (used by MIDAS Objects to
 handle OBCO roles correctly)
takeMOC(SFBool)..................a "true" event at this field reports having
 got the MOC role
grantMOC(SFBool).................a "true" event at this field reports having
 lost the MOC role
activate(SFBool).................a "true" event at this field reports having
 been activated
deactivate(SFBool)...............a "true" event at this field reports having
 been deactivated

5.1.4 Address of the Module Coordinator

smsModCoord(SFNode)..............Address of the Module Coordinator <Script>.
 If a module coordinator extension module or
 a MIDAS Object wants to send an event to the
 Module Coordinator, then it can address the
 input fields of the Module Coordinator via
 modParam.smsModCoord.<fieldName>

